For simplicity, we download the data here and save locally
import pandas as pd
def get_LINEAR_lightcurve(lcid):
from astroML.datasets import fetch_LINEAR_sample
LINEAR_sample = fetch_LINEAR_sample()
data = pd.DataFrame(LINEAR_sample[lcid],
columns=['t', 'mag', 'magerr'])
data.to_csv('LINEAR_{0}.csv'.format(lcid), index=False)
# Uncomment to download the data
# get_LINEAR_lightcurve(lcid=11375941)
data = pd.read_csv('LINEAR_11375941.csv')
data.head()
| t | mag | magerr | |
|---|---|---|---|
| 0 | 52650.434545 | 15.969 | 0.035 |
| 1 | 52650.448450 | 16.036 | 0.039 |
| 2 | 52650.462420 | 15.990 | 0.035 |
| 3 | 52650.476485 | 16.027 | 0.035 |
| 4 | 52650.490443 | 15.675 | 0.030 |
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
from astropy.timeseries import LombScargle
ls = LombScargle(data.t, 1, fit_mean=False, center_data=False)
freqW, powerW = ls.autopower(minimum_frequency=0, maximum_frequency=24)
fig, ax = plt.subplots(figsize=(8, 3))
fig.subplots_adjust(bottom=0.2)
ax.set_xscale('log')
ax.plot(1. / freqW, powerW, '-k', rasterized=True)
ax.set(xlabel='period',
ylabel='window power',
xlim=(0.1, 1000));
fig.savefig('fig14_LINEAR_window.pdf')
/Users/jakevdp/anaconda/envs/python3.5/lib/python3.5/site-packages/ipykernel/__main__.py:9: RuntimeWarning: divide by zero encountered in true_divide
ls = LombScargle(data.t, data.mag, data.magerr)
freq, power = ls.autopower(minimum_frequency=0, maximum_frequency=35)
period_days = 1. / freq
period_hours = 24. / freq
fig, ax = plt.subplots(figsize=(8, 3))
ax.plot(period_hours, power, '-k', rasterized=True)
ax.set(xlim=(1, 15),
xlabel='period (hours)',
ylabel='window power');
/Users/jakevdp/anaconda/envs/python3.5/lib/python3.5/site-packages/ipykernel/__main__.py:4: RuntimeWarning: divide by zero encountered in true_divide /Users/jakevdp/anaconda/envs/python3.5/lib/python3.5/site-packages/ipykernel/__main__.py:5: RuntimeWarning: divide by zero encountered in true_divide
fmax = freq[np.argmax(power)]
print(fmax)
9.30184494756
fig, ax = plt.subplots(2, figsize=(10, 6), sharex=True, sharey=True)
ax[0].plot(freqW, powerW, '-k', rasterized=True)
ax[1].plot(freq, power, '-k', rasterized=True)
ax[0].set(ylabel='Lomb-Scargle power',
title='Window Power Spectrum')
ax[1].set(xlabel='frequency (days$^{-1}$)',
ylabel='Lomb-Scargle power',
title='Light Curve Power Spectrum',
xlim=(-0.1, 25),
ylim=(0, 1))
inset = [fig.add_axes([0.57, 0.685, 0.30, 0.18]),
fig.add_axes([0.57, 0.27, 0.30, 0.18])]
inset[0].plot(freqW * 365, powerW, '-k')
inset[1].plot((freq - fmax) * 365, power, '-k')
inset[0].set(xlabel='frequency (years$^{-1}$)',
xlim=(0, 5), ylim=(0, 1))
inset[0].yaxis.set_major_locator(plt.MultipleLocator(0.25))
inset[1].set(xlabel='frequency - $f_{max}$ (years$^{-1}$)',
xlim=(-2.5, 2.5), ylim=(0, 1));
inset[1].yaxis.set_major_locator(plt.MultipleLocator(0.25))
fig.savefig('fig15_LINEAR_window_effect.pdf')