%matplotlib inline
import math,sys,os,numpy as np
from numpy.random import random
from matplotlib import pyplot as plt, rcParams, animation, rc
from __future__ import print_function, division
from ipywidgets import interact, interactive, fixed
from ipywidgets.widgets import *
rc('animation', html='html5')
rcParams['figure.figsize'] = 3, 3
%precision 4
np.set_printoptions(precision=4, linewidth=100)
def lin(a,b,x): return a*x+b
a=3.
b=8.
n=30
x = random(n)
y = lin(a,b,x)
x
array([ 0.3046, 0.918 , 0.7925, 0.8476, 0.2508, 0.3504, 0.8326, 0.6875, 0.4449, 0.4687,
0.5901, 0.2757, 0.6629, 0.169 , 0.8677, 0.6612, 0.112 , 0.1669, 0.6226, 0.6174,
0.3871, 0.4724, 0.3242, 0.7871, 0.0157, 0.8589, 0.7008, 0.2942, 0.3166, 0.5847])
y
array([ 8.9138, 10.7541, 10.3775, 10.5428, 8.7525, 9.0511, 10.4977, 10.0626, 9.3347,
9.4062, 9.7704, 8.827 , 9.9888, 8.507 , 10.603 , 9.9836, 8.336 , 8.5006,
9.8678, 9.8523, 9.1614, 9.4172, 8.9725, 10.3614, 8.0471, 10.5766, 10.1025,
8.8827, 8.9497, 9.7542])
plt.scatter(x,y)
<matplotlib.collections.PathCollection at 0x7ff89aea9668>
def sse(y,y_pred): return ((y-y_pred)**2).sum()
def loss(y,a,b,x): return sse(y, lin(a,b,x))
def avg_loss(y,a,b,x): return np.sqrt(loss(y,a,b,x)/n)
a_guess=-1.
b_guess=1.
avg_loss(y, a_guess, b_guess, x)
9.1074
lr=0.01
# d[(y-(a*x+b))**2,b] = 2 (b + a x - y) = 2 (y_pred - y)
# d[(y-(a*x+b))**2,a] = 2 x (b + a x - y) = x * dy/db
def upd():
global a_guess, b_guess
# make a prediction using the current weights
y_pred = lin(a_guess, b_guess, x)
# calculate the derivate of the loss
dydb = 2 * (y_pred - y)
dyda = x*dydb
# update our weights by moving in direction of steepest descent
a_guess -= lr*dyda.mean()
b_guess -= lr*dydb.mean()
fig = plt.figure(dpi=100, figsize=(5, 4))
plt.scatter(x,y)
line, = plt.plot(x,lin(a_guess,b_guess,x))
plt.close()
def animate(i):
line.set_ydata(lin(a_guess,b_guess,x))
for i in range(10): upd()
return line,
ani = animation.FuncAnimation(fig, animate, np.arange(0, 40), interval=100)
ani