%install '.package(path: "$cwd/FastaiNotebook_05b_early_stopping")' FastaiNotebook_05b_early_stopping
Installing packages: .package(path: "/home/ubuntu/fastai_docs/dev_swift/FastaiNotebook_05b_early_stopping") FastaiNotebook_05b_early_stopping With SwiftPM flags: [] Working in: /tmp/tmpyihp3nn8/swift-install Fetching https://github.com/mxcl/Path.swift Fetching https://github.com/JustHTTP/Just Completed resolution in 3.15s Cloning https://github.com/mxcl/Path.swift Resolving https://github.com/mxcl/Path.swift at 0.16.2 Cloning https://github.com/JustHTTP/Just Resolving https://github.com/JustHTTP/Just at 0.7.1 Compile Swift Module 'Just' (1 sources) Compile Swift Module 'Path' (9 sources) Compile Swift Module 'FastaiNotebook_05b_early_stopping' (10 sources) Compile Swift Module 'jupyterInstalledPackages' (1 sources) Linking ./.build/x86_64-unknown-linux/debug/libjupyterInstalledPackages.so Initializing Swift... Installation complete!
import FastaiNotebook_05b_early_stopping
%include "EnableIPythonDisplay.swift"
IPythonDisplay.shell.enable_matplotlib("inline")
('inline', 'module://ipykernel.pylab.backend_inline')
// export
import Path
import TensorFlow
import Python
let plt = Python.import("matplotlib.pyplot")
let data = mnistDataBunch(flat: false, bs: 512)
let firstBatch = data.train.first(where: { _ in true })!
let batchShape = firstBatch.xb.shape
let batchSize = batchShape.dimensions[0]
let exampleSideSize = batchShape.dimensions[1]
assert(exampleSideSize == batchShape.dimensions[2])
print("Batch size: \(batchSize)")
print("Example side size: \(exampleSideSize)")
let classCount = firstBatch.yb.shape.dimensions[0]
print("Class count: \(classCount)")
Batch size: 512 Example side size: 28 Class count: 512
firstBatch.xb.shape
▿ TensorShape
▿ dimensions : 3 elements
- 0 : 512
- 1 : 28
- 2 : 28
// export
extension Learner {
public class AddChannel: Delegate {
public override func batchWillStart(learner: Learner) {
learner.currentInput = learner.currentInput!.expandingShape(at: -1)
}
}
public func makeAddChannel() -> AddChannel { return AddChannel() }
}
//export
public func conv<Scalar>(_ cIn: Int, _ cOut: Int, ks: Int = 3, stride: Int = 2) -> FAConv2D<Scalar> {
return FAConv2D<Scalar>(filterShape: (ks, ks, cIn, cOut),
strides: (stride,stride),
padding: .same,
activation: relu)
}
public struct CnnModel: Layer {
public var convs: [FAConv2D<Float>]
public var pool = FAAdaptiveAvgPool2D<Float>()
public var flatten = Flatten<Float>()
public var linear: FADense<Float>
public init(channelIn: Int, nOut: Int, filters: [Int]){
convs = []
let allFilters = [channelIn] + filters
for i in 0..<filters.count { convs.append(conv(allFilters[i], allFilters[i+1])) }
linear = FADense<Float>(inputSize: filters.last!, outputSize: nOut)
}
@differentiable
public func applied(to input: TF) -> TF {
return input.sequenced(through: convs, pool, flatten, linear)
}
}
let model = CnnModel(channelIn: 1, nOut: 10, filters: [8, 16, 32, 32])
// Test that data goes through the model as expected.
let predictions = model.applied(to: firstBatch.xb.expandingShape(at: -1))
print(predictions.shape)
print(predictions[0])
TensorShape(dimensions: [512, 10]) [-0.0056363903, -0.0055124904, 0.003962202, 0.00024041766, 0.0010704098, 0.012630586, -0.01890578, -0.012497755, -0.0075372434, -0.001092382]
let opt = SimpleSGD<CnnModel, Float>(learningRate: 0.4)
func modelInit() -> CnnModel { return CnnModel(channelIn: 1, nOut: 10, filters: [8, 16, 32, 32]) }
let learner = Learner(data: data, lossFunction: softmaxCrossEntropy, optimizer: opt, initializingWith: modelInit)
let recorder = learner.makeDefaultDelegates(metrics: [accuracy])
learner.addDelegates([learner.makeNormalize(mean: mnistStats.mean, std: mnistStats.std),
learner.makeAddChannel()])
// This happens on the GPU (if you have one and it's configured correctly).
// I tried this on a GCE 8vCPU 30GB + Tesla P100:
// - time: ~4.3s
// - nvidia-smi shows ~10% GPU-Util while this is running
time {
try! learner.fit(1)
}
Epoch 0: [0.3500186, 0.8953] 4725.451923 ms
// This happens on the CPU.
// I tried this on a GCE 8vCPU 30GB + Tesla P100:
// - time: ~6.3s
// - nvidia-smi shows 0% GPU-Util while this is running
time {
withDevice(.cpu) {
try! learner.fit(1)
}
}
Epoch 0: [0.1639871, 0.9526] 6769.385988 ms
class ActivationStatistics: LayerDelegate<Tensor<Float>> {
var activationMeans: [Float] = []
var activationStds: [Float] = []
override func didProduceActivation(_ activation: Tensor<Float>) {
activationMeans.append(activation.mean().scalar!)
activationStds.append(activation.standardDeviation().reshaped(to: []).scalar!)
}
}
extension KeyPathIterable {
mutating func initializeLayerDelegates<T>(with initializer: () -> LayerDelegate<T>) {
for kp in recursivelyAllWritableKeyPaths(to: LayerDelegate<T>.self) {
self[keyPath: kp] = initializer()
}
}
func layerDelegates<T, D: LayerDelegate<T>>(havingType: D.Type) -> [D] {
var result: [D] = []
for kp in recursivelyAllWritableKeyPaths(to: LayerDelegate<T>.self) {
guard let d = self[keyPath: kp] as? D else { continue }
result.append(d)
}
return result
}
}
let learner = Learner(data: data, lossFunction: softmaxCrossEntropy, optimizer: opt, initializingWith: modelInit)
let recorder = learner.makeDefaultDelegates(metrics: [accuracy])
learner.addDelegates([learner.makeNormalize(mean: mnistStats.mean, std: mnistStats.std),
learner.makeAddChannel()])
learner.model.initializeLayerDelegates(with: { ActivationStatistics() })
// This LayerDelegate stuff slows it down to ~6s/epoch.
time {
try! learner.fit(2)
}
Epoch 0: [0.3566188, 0.8989] Epoch 1: [0.16688569, 0.9504] 9983.915673 ms
let activationStatistics = learner.model.layerDelegates(havingType: ActivationStatistics.self)
for stats in activationStatistics {
plt.plot(stats.activationMeans)
}
plt.legend(Array(1...activationStatistics.count))
plt.show()
None
for stats in activationStatistics {
plt.plot(stats.activationStds)
}
plt.legend(Array(1...activationStatistics.count))
plt.show()
None
notebookToScript(fname: (Path.cwd / "06_cuda.ipynb").string)