#export
from fastai2.data.all import *
from fastai2.optimizer import *
from fastai2.learner import *
#hide
from nbdev.showdoc import *
#default_exp metrics
# default_cls_lvl 3
Definition of the metrics that can be used in training models
This is where the function that converts scikit-learn metrics to fastai metrics is defined. You should skip this section unless you want to know all about the internals of fastai.
#export
import sklearn.metrics as skm
#export
import scipy.stats as scs
#export torch_core
def flatten_check(inp, targ):
"Check that `out` and `targ` have the same number of elements and flatten them."
inp,targ = inp.contiguous().view(-1),targ.contiguous().view(-1)
test_eq(len(inp), len(targ))
return inp,targ
x1,x2 = torch.randn(5,4),torch.randn(20)
x1,x2 = flatten_check(x1,x2)
test_eq(x1.shape, [20])
test_eq(x2.shape, [20])
x1,x2 = torch.randn(5,4),torch.randn(21)
test_fail(lambda: flatten_check(x1,x2))
#export
mk_class('ActivationType', **{o:o.lower() for o in ['No', 'Sigmoid', 'Softmax', 'BinarySoftmax']},
doc="All possible activation classes for `AccumMetric")
#export
class AccumMetric(Metric):
"Stores predictions and targets on CPU in accumulate to perform final calculations with `func`."
def __init__(self, func, dim_argmax=None, activation=ActivationType.No, thresh=None, to_np=False,
invert_arg=False, flatten=True, **kwargs):
store_attr(self,'func,dim_argmax,activation,thresh,flatten')
self.to_np,self.invert_args,self.kwargs = to_np,invert_arg,kwargs
def reset(self):
"Clear all targs and preds"
self.targs,self.preds = [],[]
def accumulate(self, learn):
"Store targs and preds from `learn`, using activation function and argmax as appropriate"
pred = learn.pred
if self.activation in [ActivationType.Softmax, ActivationType.BinarySoftmax]:
pred = F.softmax(pred, dim=self.dim_argmax)
if self.activation == ActivationType.BinarySoftmax: pred = pred[:, -1]
elif self.activation == ActivationType.Sigmoid: pred = torch.sigmoid(pred)
elif self.dim_argmax: pred = pred.argmax(dim=self.dim_argmax)
if self.thresh: pred = (pred >= self.thresh)
self.accum_values(pred,learn.y)
def accum_values(self, preds, targs):
"Store targs and preds"
preds,targs = to_detach(preds),to_detach(targs)
if self.flatten: preds,targs = flatten_check(preds,targs)
self.preds.append(preds)
self.targs.append(targs)
def __call__(self, preds, targs):
"Calculate metric on one batch of data"
self.reset()
self.accum_values(preds,targs)
return self.value
@property
def value(self):
"Value of the metric using accumulated preds and targs"
if len(self.preds) == 0: return
preds,targs = torch.cat(self.preds),torch.cat(self.targs)
if self.to_np: preds,targs = preds.numpy(),targs.numpy()
return self.func(targs, preds, **self.kwargs) if self.invert_args else self.func(preds, targs, **self.kwargs)
@property
def name(self): return self.func.func.__name__ if hasattr(self.func, 'func') else self.func.__name__
func is only applied to the accumulated predictions/targets when the value attribute is asked for (so at the end of a validation/trianing phase, in use with Learner and its Recorder).The signature of func should be inp,targ (where inp are the predictions of the model and targ the corresponding labels).
For classification problems with single label, predictions need to be transformed with a sofmax then an argmax before being compared to the targets. Since a softmax doesn't change the order of the numbers, we can just apply the argmax. Pass along dim_argmax to have this done by AccumMetric (usually -1 will work pretty well). If you need to pass to your metrics the probabilities and not the predictions, use softmax=True.
For classification problems with multiple labels, or if your targets are onehot-encoded, predictions may need to pass through a sigmoid (if it wasn't included in your model) then be compared to a given threshold (to decide between 0 and 1), this is done by AccumMetric if you pass sigmoid=True and/or a value for thresh.
If you want to use a metric function sklearn.metrics, you will need to convert predictions and labels to numpy arrays with to_np=True. Also, scikit-learn metrics adopt the convention y_true, y_preds which is the opposite from us, so you will need to pass invert_arg=True to make AccumMetric do the inversion for you.
#For testing: a fake learner and a metric that isn't an average
class TstLearner():
def __init__(self): self.pred,self.y = None,None
def _l2_mean(x,y): return torch.sqrt((x.float()-y.float()).pow(2).mean())
#Go through a fake cycle with various batch sizes and computes the value of met
def compute_val(met, x1, x2):
met.reset()
vals = [0,6,15,20]
learn = TstLearner()
for i in range(3):
learn.pred,learn.y = x1[vals[i]:vals[i+1]],x2[vals[i]:vals[i+1]]
met.accumulate(learn)
return met.value
x1,x2 = torch.randn(20,5),torch.randn(20,5)
tst = AccumMetric(_l2_mean)
test_close(compute_val(tst, x1, x2), _l2_mean(x1, x2))
test_eq(torch.cat(tst.preds), x1.view(-1))
test_eq(torch.cat(tst.targs), x2.view(-1))
#test argmax
x1,x2 = torch.randn(20,5),torch.randint(0, 5, (20,))
tst = AccumMetric(_l2_mean, dim_argmax=-1)
test_close(compute_val(tst, x1, x2), _l2_mean(x1.argmax(dim=-1), x2))
#test thresh
x1,x2 = torch.randn(20,5),torch.randint(0, 2, (20,5)).bool()
tst = AccumMetric(_l2_mean, thresh=0.5)
test_close(compute_val(tst, x1, x2), _l2_mean((x1 >= 0.5), x2))
#test sigmoid
x1,x2 = torch.randn(20,5),torch.randn(20,5)
tst = AccumMetric(_l2_mean, activation=ActivationType.Sigmoid)
test_close(compute_val(tst, x1, x2), _l2_mean(torch.sigmoid(x1), x2))
#test to_np
x1,x2 = torch.randn(20,5),torch.randn(20,5)
tst = AccumMetric(lambda x,y: isinstance(x, np.ndarray) and isinstance(y, np.ndarray), to_np=True)
assert compute_val(tst, x1, x2)
#test invert_arg
x1,x2 = torch.randn(20,5),torch.randn(20,5)
tst = AccumMetric(lambda x,y: torch.sqrt(x.pow(2).mean()))
test_close(compute_val(tst, x1, x2), torch.sqrt(x1.pow(2).mean()))
tst = AccumMetric(lambda x,y: torch.sqrt(x.pow(2).mean()), invert_arg=True)
test_close(compute_val(tst, x1, x2), torch.sqrt(x2.pow(2).mean()))
#hide
def _l2_mean(x,y): return torch.sqrt((x.argmax(dim=-1).float()-y.float()).pow(2).mean())
x1,x2 = torch.randn(20,5),torch.randint(0, 5, (20,))
tst = AccumMetric(_l2_mean, dim_argmax=-1, flatten=False, activation=ActivationType.Softmax)
test_close(compute_val(tst, x1, x2), _l2_mean(F.softmax(x1, dim=-1), x2))
#export
def skm_to_fastai(func, is_class=True, thresh=None, axis=-1, activation=None, **kwargs):
"Convert `func` from sklearn.metrics to a fastai metric"
dim_argmax = axis if is_class and thresh is None else None
if activation is None:
activation = ActivationType.Sigmoid if (is_class and thresh is not None) else ActivationType.No
return AccumMetric(func, dim_argmax=dim_argmax, activation=activation, thresh=thresh,
to_np=True, invert_arg=True, **kwargs)
This is the quickest way to use a sckit-learn metric in a fastai training loop. is_class indicates if you are in a classification problem or not. In this case:
thresh to None indicates it's a single-label classification problem and predictions will pass through an argmax over axis before being compared to the targetsthresh indicates it's a multi-label classification problem and predictions will pass through a sigmoid (can be deactivated with sigmoid=False) and be compared to thresh before being compared to the targetsIf is_class=False, it indicates you are in a regression problem, and predictions are compared to the targets without being modified. In all cases, kwargs are extra keyword arguments passed to func.
tst_single = skm_to_fastai(skm.precision_score)
x1,x2 = torch.randn(20,2),torch.randint(0, 2, (20,))
test_close(compute_val(tst_single, x1, x2), skm.precision_score(x2, x1.argmax(dim=-1)))
tst_multi = skm_to_fastai(skm.precision_score, thresh=0.2)
x1,x2 = torch.randn(20),torch.randint(0, 2, (20,))
test_close(compute_val(tst_multi, x1, x2), skm.precision_score(x2, torch.sigmoid(x1) >= 0.2))
tst_multi = skm_to_fastai(skm.precision_score, thresh=0.2, activation=ActivationType.No)
x1,x2 = torch.randn(20),torch.randint(0, 2, (20,))
test_close(compute_val(tst_multi, x1, x2), skm.precision_score(x2, x1 >= 0.2))
tst_reg = skm_to_fastai(skm.r2_score, is_class=False)
x1,x2 = torch.randn(20,5),torch.randn(20,5)
test_close(compute_val(tst_reg, x1, x2), skm.r2_score(x2.view(-1), x1.view(-1)))
test_close(tst_reg(x1, x2), skm.r2_score(x2.view(-1), x1.view(-1)))
#export
def optim_metric(f, argname, bounds, tol=0.01, do_neg=True, get_x=False):
"Replace metric `f` with a version that optimizes argument `argname`"
def _f(preds, targs):
def minfunc(x):
kwargs = {argname:x}
res = f(preds, targs, **kwargs)
return -res if do_neg else res
optres = scipy.optimize.minimize_scalar(minfunc, bounds=bounds, method='bounded',
options={'xatol':0.01})
fun = -optres.fun if do_neg else optres.fun
return (fun,optres.x) if get_x else fun
_f.__name__ = f'opt_{f.__name__}'
return _f
Warning: All functions defined in this section are intended for single-label classification and targets that are not one-hot encoded. For multi-label problems or one-hot encoded targets, use the version suffixed with multi.
Warning: Many metrics in fastai are thin wrappers around sklearn functionality. However, sklearn metrics can handle python list strings, amongst other things, whereas fastai metrics work with PyTorch, and thus require tensors. The arguments that are passed to metrics are after all transformations, such as categories being converted to indices, have occured. This means that when you pass a label of a metric, for instance, that you must pass indices, not strings. This can be converted with
vocab.map_obj.
#export
def accuracy(inp, targ, axis=-1):
"Compute accuracy with `targ` when `pred` is bs * n_classes"
pred,targ = flatten_check(inp.argmax(dim=axis), targ)
return (pred == targ).float().mean()
#For testing
def change_targ(targ, n, c):
idx = torch.randperm(len(targ))[:n]
res = targ.clone()
for i in idx: res[i] = (res[i]+random.randint(1,c-1))%c
return res
x = torch.randn(4,5)
y = x.argmax(dim=1)
test_eq(accuracy(x,y), 1)
y1 = change_targ(y, 2, 5)
test_eq(accuracy(x,y1), 0.5)
test_eq(accuracy(x.unsqueeze(1).expand(4,2,5), torch.stack([y,y1], dim=1)), 0.75)
#export
def error_rate(inp, targ, axis=-1):
"1 - `accuracy`"
return 1 - accuracy(inp, targ, axis=axis)
x = torch.randn(4,5)
y = x.argmax(dim=1)
test_eq(error_rate(x,y), 0)
y1 = change_targ(y, 2, 5)
test_eq(error_rate(x,y1), 0.5)
test_eq(error_rate(x.unsqueeze(1).expand(4,2,5), torch.stack([y,y1], dim=1)), 0.25)
#export
def top_k_accuracy(inp, targ, k=5, axis=-1):
"Computes the Top-k accuracy (`targ` is in the top `k` predictions of `inp`)"
inp = inp.topk(k=k, dim=axis)[1]
targ = targ.unsqueeze(dim=axis).expand_as(inp)
return (inp == targ).sum(dim=-1).float().mean()
x = torch.randn(6,5)
y = torch.arange(0,6)
test_eq(top_k_accuracy(x[:5],y[:5]), 1)
test_eq(top_k_accuracy(x, y), 5/6)
#export
def APScoreBinary(axis=-1, average='macro', pos_label=1, sample_weight=None):
"Average Precision for single-label binary classification problems"
return skm_to_fastai(skm.average_precision_score, axis=axis, activation=ActivationType.BinarySoftmax,
average=average, pos_label=pos_label, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def BalancedAccuracy(axis=-1, sample_weight=None, adjusted=False):
"Balanced Accuracy for single-label binary classification problems"
return skm_to_fastai(skm.balanced_accuracy_score, axis=axis,
sample_weight=sample_weight, adjusted=adjusted)
See the scikit-learn documentation for more details.
#export
def BrierScore(axis=-1, sample_weight=None, pos_label=None):
"Brier score for single-label classification problems"
return skm_to_fastai(skm.brier_score_loss, axis=axis,
sample_weight=sample_weight, pos_label=pos_label)
See the scikit-learn documentation for more details.
#export
def CohenKappa(axis=-1, labels=None, weights=None, sample_weight=None):
"Cohen kappa for single-label classification problems"
return skm_to_fastai(skm.cohen_kappa_score, axis=axis, labels=labels, weights=weights,
sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def F1Score(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"F1 score for single-label classification problems"
return skm_to_fastai(skm.f1_score, axis=axis,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def FBeta(beta, axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"FBeta score with `beta` for single-label classification problems"
return skm_to_fastai(skm.fbeta_score, axis=axis,
beta=beta, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def HammingLoss(axis=-1, sample_weight=None):
"Hamming loss for single-label classification problems"
return skm_to_fastai(skm.hamming_loss, axis=axis,
sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def Jaccard(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"Jaccard score for single-label classification problems"
return skm_to_fastai(skm.jaccard_score, axis=axis,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def Precision(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"Precision for single-label classification problems"
return skm_to_fastai(skm.precision_score, axis=axis,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def Recall(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"Recall for single-label classification problems"
return skm_to_fastai(skm.recall_score, axis=axis,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def RocAuc(axis=-1, average='macro', sample_weight=None, max_fpr=None, multi_class='ovr'):
"Area Under the Receiver Operating Characteristic Curve for single-label multiclass classification problems"
assert multi_class in ['ovr', 'ovo']
return skm_to_fastai(skm.roc_auc_score, axis=axis, activation=ActivationType.Softmax, flatten=False,
average=average, sample_weight=sample_weight, max_fpr=max_fpr, multi_class=multi_class)
See the scikit-learn documentation for more details.
#export
def RocAucBinary(axis=-1, average='macro', sample_weight=None, max_fpr=None, multi_class='raise'):
"Area Under the Receiver Operating Characteristic Curve for single-label binary classification problems"
return skm_to_fastai(skm.roc_auc_score, axis=axis, activation=ActivationType.BinarySoftmax,
average=average, sample_weight=sample_weight, max_fpr=max_fpr, multi_class=multi_class)
See the scikit-learn documentation for more details.
#export
def MatthewsCorrCoef(sample_weight=None, **kwargs):
"Matthews correlation coefficient for single-label classification problems"
return skm_to_fastai(skm.matthews_corrcoef, sample_weight=sample_weight, **kwargs)
See the scikit-learn documentation for more details.
#export
class Perplexity(AvgLoss):
"Perplexity (exponential of cross-entropy loss) for Language Models"
@property
def value(self): return torch.exp(self.total/self.count) if self.count != 0 else None
@property
def name(self): return "perplexity"
perplexity = Perplexity()
x1,x2 = torch.randn(20,5),torch.randint(0, 5, (20,))
tst = perplexity
tst.reset()
vals = [0,6,15,20]
learn = TstLearner()
for i in range(3):
learn.y,learn.yb = x2[vals[i]:vals[i+1]],(x2[vals[i]:vals[i+1]],)
learn.loss = F.cross_entropy(x1[vals[i]:vals[i+1]],x2[vals[i]:vals[i+1]])
tst.accumulate(learn)
test_close(tst.value, torch.exp(F.cross_entropy(x1,x2)))
#export
def accuracy_multi(inp, targ, thresh=0.5, sigmoid=True):
"Compute accuracy when `inp` and `targ` are the same size."
inp,targ = flatten_check(inp,targ)
if sigmoid: inp = inp.sigmoid()
return ((inp>thresh)==targ.bool()).float().mean()
#For testing
def change_1h_targ(targ, n):
idx = torch.randperm(targ.numel())[:n]
res = targ.clone().view(-1)
for i in idx: res[i] = 1-res[i]
return res.view(targ.shape)
x = torch.randn(4,5)
y = (torch.sigmoid(x) >= 0.5).byte()
test_eq(accuracy_multi(x,y), 1)
test_eq(accuracy_multi(x,1-y), 0)
y1 = change_1h_targ(y, 5)
test_eq(accuracy_multi(x,y1), 0.75)
#Different thresh
y = (torch.sigmoid(x) >= 0.2).byte()
test_eq(accuracy_multi(x,y, thresh=0.2), 1)
test_eq(accuracy_multi(x,1-y, thresh=0.2), 0)
y1 = change_1h_targ(y, 5)
test_eq(accuracy_multi(x,y1, thresh=0.2), 0.75)
#No sigmoid
y = (x >= 0.5).byte()
test_eq(accuracy_multi(x,y, sigmoid=False), 1)
test_eq(accuracy_multi(x,1-y, sigmoid=False), 0)
y1 = change_1h_targ(y, 5)
test_eq(accuracy_multi(x,y1, sigmoid=False), 0.75)
#export
def APScoreMulti(sigmoid=True, average='macro', pos_label=1, sample_weight=None):
"Average Precision for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.average_precision_score, activation=activation, flatten=False,
average=average, pos_label=pos_label, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def BrierScoreMulti(thresh=0.5, sigmoid=True, sample_weight=None, pos_label=None):
"Brier score for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.brier_score_loss, thresh=thresh, activation=activation, flatten=False,
sample_weight=sample_weight, pos_label=pos_label)
See the scikit-learn documentation for more details.
#export
def F1ScoreMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"F1 score for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.f1_score, thresh=thresh, activation=activation, flatten=False,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def FBetaMulti(beta, thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"FBeta score with `beta` for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.fbeta_score, thresh=thresh, activation=activation, flatten=False,
beta=beta, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def HammingLossMulti(thresh=0.5, sigmoid=True, labels=None, sample_weight=None):
"Hamming loss for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.hamming_loss, thresh=thresh, activation=activation, flatten=False,
sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def JaccardMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"Jaccard score for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.jaccard_score, thresh=thresh, activation=activation, flatten=False,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def MatthewsCorrCoefMulti(thresh=0.5, sigmoid=True, sample_weight=None):
"Matthews correlation coefficient for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.matthews_corrcoef, thresh=thresh, activation=activation, flatten=False, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def PrecisionMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"Precision for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.precision_score, thresh=thresh, activation=activation, flatten=False,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def RecallMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"Recall for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.recall_score, thresh=thresh, activation=activation, flatten=False,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def RocAucMulti(sigmoid=True, average='macro', sample_weight=None, max_fpr=None):
"Area Under the Receiver Operating Characteristic Curve for multi-label binary classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.roc_auc_score, activation=activation, flatten=False,
average=average, sample_weight=sample_weight, max_fpr=max_fpr)
roc_auc_metric = RocAucMulti(sigmoid=False)
x,y = torch.tensor([np.arange(start=0, stop=0.2, step=0.04)]*20), torch.tensor([0, 0, 1, 1]).repeat(5)
assert compute_val(roc_auc_metric, x, y) == 0.5
See the scikit-learn documentation for more details.
#export
def mse(inp,targ):
"Mean squared error between `inp` and `targ`."
return F.mse_loss(*flatten_check(inp,targ))
x1,x2 = torch.randn(4,5),torch.randn(4,5)
test_close(mse(x1,x2), (x1-x2).pow(2).mean())
#export
def _rmse(inp, targ): return torch.sqrt(F.mse_loss(inp, targ))
rmse = AccumMetric(_rmse)
rmse.__doc__ = "Root mean squared error"
show_doc(rmse, name="rmse")
x1,x2 = torch.randn(20,5),torch.randn(20,5)
test_eq(compute_val(rmse, x1, x2), torch.sqrt(F.mse_loss(x1,x2)))
#export
def mae(inp,targ):
"Mean absolute error between `inp` and `targ`."
inp,targ = flatten_check(inp,targ)
return torch.abs(inp - targ).mean()
x1,x2 = torch.randn(4,5),torch.randn(4,5)
test_eq(mae(x1,x2), torch.abs(x1-x2).mean())
#export
def msle(inp, targ):
"Mean squared logarithmic error between `inp` and `targ`."
inp,targ = flatten_check(inp,targ)
return F.mse_loss(torch.log(1 + inp), torch.log(1 + targ))
x1,x2 = torch.randn(4,5),torch.randn(4,5)
x1,x2 = torch.relu(x1),torch.relu(x2)
test_close(msle(x1,x2), (torch.log(x1+1)-torch.log(x2+1)).pow(2).mean())
#export
def _exp_rmspe(inp,targ):
inp,targ = torch.exp(inp),torch.exp(targ)
return torch.sqrt(((targ - inp)/targ).pow(2).mean())
exp_rmspe = AccumMetric(_exp_rmspe)
exp_rmspe.__doc__ = "Root mean square percentage error of the exponential of predictions and targets"
show_doc(exp_rmspe, name="exp_rmspe")
x1,x2 = torch.randn(20,5),torch.randn(20,5)
test_eq(compute_val(exp_rmspe, x1, x2), torch.sqrt((((torch.exp(x2) - torch.exp(x1))/torch.exp(x2))**2).mean()))
#export
def ExplainedVariance(sample_weight=None):
"Explained variance betzeen predictions and targets"
return skm_to_fastai(skm.explained_variance_score, is_class=False, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
def R2Score(sample_weight=None):
"R2 score betzeen predictions and targets"
return skm_to_fastai(skm.r2_score, is_class=False, sample_weight=sample_weight)
See the scikit-learn documentation for more details.
#export
@delegates(AccumMetric)
def PearsonCorrCoef(dim_argmax=None, **kwargs):
"Pearson correlation coefficient for regression problem"
def pearsonr(x,y): return scs.pearsonr(x,y)[0]
return AccumMetric(pearsonr, invert_arg=False, dim_argmax=dim_argmax, **kwargs)
See the scipy documentation for more details.
x = torch.randint(-999, 999,(20,))
y = torch.randint(-999, 999,(20,))
test_eq(compute_val(PearsonCorrCoef(), x, y), scs.pearsonr(x.view(-1), y.view(-1))[0])
#export
@delegates(AccumMetric)
def SpearmanCorrCoef(dim_argmax=None, axis=0, nan_policy='propagate', **kwargs):
"Spearman correlation coefficient for regression problem"
def spearmanr(a,b=None,**kwargs): return scs.spearmanr(a,b,**kwargs)[0]
return AccumMetric(partial(spearmanr, axis=axis, nan_policy=nan_policy),
invert_arg=False, dim_argmax=dim_argmax, **kwargs)
See the scipy documentation for more details.
x = torch.randint(-999, 999,(20,))
y = torch.randint(-999, 999,(20,))
test_eq(compute_val(SpearmanCorrCoef(), x, y), scs.spearmanr(x.view(-1), y.view(-1))[0])
#export
def foreground_acc(inp, targ, bkg_idx=0, axis=1):
"Computes non-background accuracy for multiclass segmentation"
targ = targ.squeeze(1)
mask = targ != bkg_idx
return (inp.argmax(dim=axis)[mask]==targ[mask]).float().mean()
x = torch.randn(4,5,3,3)
y = x.argmax(dim=1)[:,None]
test_eq(foreground_acc(x,y), 1)
y[0] = 0 #the 0s are ignored so we get the same value
test_eq(foreground_acc(x,y), 1)
#export
class Dice(Metric):
"Dice coefficient metric for binary target in segmentation"
def __init__(self, axis=1): self.axis = axis
def reset(self): self.inter,self.union = 0,0
def accumulate(self, learn):
pred,targ = flatten_check(learn.pred.argmax(dim=self.axis), learn.y)
self.inter += (pred*targ).float().sum().item()
self.union += (pred+targ).float().sum().item()
@property
def value(self): return 2. * self.inter/self.union if self.union > 0 else None
x1 = torch.randn(20,2,3,3)
x2 = torch.randint(0, 2, (20, 3, 3))
pred = x1.argmax(1)
inter = (pred*x2).float().sum().item()
union = (pred+x2).float().sum().item()
test_eq(compute_val(Dice(), x1, x2), 2*inter/union)
#export
class JaccardCoeff(Dice):
"Implemetation of the jaccard coefficient that is lighter in RAM"
@property
def value(self): return self.inter/(self.union-self.inter) if self.union > 0 else None
x1 = torch.randn(20,2,3,3)
x2 = torch.randint(0, 2, (20, 3, 3))
pred = x1.argmax(1)
inter = (pred*x2).float().sum().item()
union = (pred+x2).float().sum().item()
test_eq(compute_val(JaccardCoeff(), x1, x2), inter/(union-inter))
#export
class CorpusBLEUMetric(Metric):
def __init__(self, vocab_sz=5000, axis=-1):
"BLEU Metric calculated over the validation corpus"
self.metric_name = 'CorpusBLEU'
self.axis, self.vocab_sz = axis, vocab_sz
self.pred_len,self.targ_len,self.samp_idx,self.corrects,self.counts, = 0,0,0,[0]*4,[0]*4
def reset(self):
self.pred_len,self.targ_len,self.corrects,self.counts = 0,0,[0]*4,[0]*4
class NGram():
def __init__(self, ngram, max_n=5000): self.ngram,self.max_n = ngram,max_n
def __eq__(self, other):
if len(self.ngram) != len(other.ngram): return False
return np.all(np.array(self.ngram) == np.array(other.ngram))
def __hash__(self): return int(sum([o * self.max_n**i for i,o in enumerate(self.ngram)]))
def get_grams(self, x, n, max_n=5000):
return x if n==1 else [self.NGram(x[i:i+n], max_n=max_n) for i in range(len(x)-n+1)]
def get_correct_ngrams(self, pred, targ, n, max_n=5000):
pred_grams,targ_grams = self.get_grams(pred, n, max_n=max_n),self.get_grams(targ, n, max_n=max_n)
pred_cnt,targ_cnt = Counter(pred_grams),Counter(targ_grams)
return sum([min(c, targ_cnt[g]) for g,c in pred_cnt.items()]),len(pred_grams)
def accumulate(self, learn):
if learn.training: return None
else:
last_output = learn.pred.argmax(dim=self.axis)
last_target = learn.y
for pred,targ in zip(last_output.cpu().numpy(),last_target.cpu().numpy()):
self.pred_len += len(pred)
self.targ_len += len(targ)
smooth_mteval = 1
for i in range(4):
c,t = self.get_correct_ngrams(pred, targ, i+1, max_n=self.vocab_sz)
if c == 0:
smooth_mteval *= 2
c = 1 / smooth_mteval # exp smoothing, method 3 from http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
self.corrects[i] += c
self.counts[i] += t
@property
def value(self):
if self.counts == 0: return None
elif max(self.corrects) == 0: return 0.0
else:
precs = [c/t for c,t in zip(self.corrects,self.counts)]
len_penalty = math.exp(1 - self.targ_len/self.pred_len) if self.pred_len < self.targ_len else 1
return len_penalty * ((precs[0]*precs[1]*precs[2]*precs[3]) ** 0.25)
def create_vcb_emb(pred, targ):
# create vocab "embedding" for predictions
vcb_sz = max(torch.unique(torch.cat([pred, targ])))+1
pred_emb=torch.zeros(pred.size()[0], pred.size()[1] ,vcb_sz)
for i,v in enumerate(pred):
pred_emb[i].scatter_(1, v.view(len(v),1),1)
return pred_emb
def compute_bleu_val(met, x1, x2):
met.reset()
learn = TstLearner()
learn.training=False
for i in range(len(x1)):
learn.pred,learn.y = x1, x2
met.accumulate(learn)
return met.value
targ = torch.tensor([[1,2,3,4,5,6,1,7,8]])
pred = torch.tensor([[1,9,3,4,5,6,1,10,8]])
pred_emb = create_vcb_emb(pred, targ)
test_close(compute_bleu_val(CorpusBLEUMetric(), pred_emb, targ), 0.48549)
targ = torch.tensor([[1,2,3,4,5,6,1,7,8],[1,2,3,4,5,6,1,7,8]])
pred = torch.tensor([[1,9,3,4,5,6,1,10,8],[1,9,3,4,5,6,1,10,8]])
pred_emb = create_vcb_emb(pred, targ)
test_close(compute_bleu_val(CorpusBLEUMetric(), pred_emb, targ), 0.48549)
The BLEU metric was introduced in this article to come up with a way to evaluate the performance of translation models. It's based on the precision of n-grams in your prediction compared to your target. See the fastai NLP course BLEU notebook for a more detailed description of BLEU.
The smoothing used in the precision calculation is the same as in SacreBLEU, which in turn is "method 3" from the Chen & Cherry, 2014 paper.
#export
class LossMetric(AvgMetric):
"Create a metric from `loss_func.attr` named `nm`"
def __init__(self, attr, nm=None): store_attr(self, 'attr,nm')
def accumulate(self, learn):
bs = find_bs(learn.yb)
self.total += to_detach(getattr(learn.loss_func, self.attr, 0))*bs
self.count += bs
@property
def name(self): return self.attr if self.nm is None else self.nm
#export
def LossMetrics(attrs, nms=None):
"List of `LossMetric` for each of `attrs` and `nms`"
if isinstance(attrs, str): attrs = attrs.split(',')
nms = attrs if nms is None else nms.split(',') if isinstance(nms, str) else nms
return [LossMetric(a, n) for a,n in zip(attrs,nms)]
#hide
from fastai2.test_utils import *
class CombineL1L2(Module):
def forward(self, out, targ):
self.l1 = F.l1_loss(out, targ)
self.l2 = F.mse_loss(out, targ)
return self.l1+self.l2
learn = synth_learner(metrics=LossMetrics('l1,l2'))
learn.loss_func = CombineL1L2()
learn.fit(2)
#hide
from nbdev.export import notebook2script
notebook2script()