%reload_ext autoreload
%autoreload 2
from fastai import *
from fastai.vision import *
from fastai.vision.models.wrn import wrn_22
from fastai.docs import *
from fastai.docs import CIFAR_PATH
torch.backends.cudnn.benchmark = True
untar_data(CIFAR_PATH)
ds_tfms = ([pad(padding=4), crop(size=32, row_pct=(0,1), col_pct=(0,1)), flip_lr(p=0.5)], [])
data = image_data_from_folder(CIFAR_PATH, valid='test', ds_tfms=ds_tfms, tfms=cifar_norm, bs=512)
learn = Learner(data, wrn_22(), metrics=accuracy).to_fp16()
learn.fit_one_cycle(30, 3e-3, wd=0.4, div_factor=10, pct_start=0.5)
VBox(children=(HBox(children=(IntProgress(value=0, max=1), HTML(value='0.00% [0/1 00:00<00:00]'))), HTML(value…
Total time: 00:40 epoch train loss valid loss accuracy 0 1.295876 1.038308 0.631300 (00:40)
With mixup
learn = Learner(data, wrn_22(), metrics=accuracy).to_fp16().mixup()
learn.fit_one_cycle(24, 3e-3, wd=0.2, div_factor=10, pct_start=0.5)