%matplotlib inline
import importlib
import utils2; importlib.reload(utils2)
from utils2 import *
import torch_utils; importlib.reload(torch_utils)
from torch_utils import *
The good news is that in the last month the GAN training problem has been solved! This paper shows a minor change to the loss function and constraining the weights allows a GAN to reliably learn following a consistent loss schedule.
First, we, set up batch size, image size, and size of noise vector:
bs,sz,nz = 64,64,100
Pytorch has the handy torch-vision library which makes handling images fast and easy.
PATH = 'data/cifar10/'
data = datasets.CIFAR10(root=PATH, download=True,
transform=transforms.Compose([
transforms.Scale(sz),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
)
PATH = 'data/lsun/'
data = datasets.LSUN(db_path=PATH, classes=['bedroom_train'],
transform=transforms.Compose([
transforms.Scale(sz),
transforms.CenterCrop(sz),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
Even parallel processing is handling automatically by torch-vision.
dataloader = torch.utils.data.DataLoader(data, bs, True, num_workers=8)
n = len(dataloader); n
47392
Our activation function will be tanh, so we need to do some processing to view the generated images.
def show(img, fs=(6,6)):
plt.figure(figsize = fs)
plt.imshow(np.transpose((img/2+0.5).clamp(0,1).numpy(), (1,2,0)), interpolation='nearest')
The CNN definitions are a little big for a notebook, so we import them.
import dcgan; importlib.reload(dcgan)
from dcgan import DCGAN_D, DCGAN_G
Pytorch uses module.apply() for picking an initializer.
def weights_init(m):
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
m.weight.data.normal_(0.0, 0.02)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
netG = DCGAN_G(sz, nz, 3, 64, 1, 1).cuda()
netG.apply(weights_init);
netD = DCGAN_D(sz, 3, 64, 1, 1).cuda()
netD.apply(weights_init);
Just some shortcuts to create tensors and variables.
from torch import FloatTensor as FT
def Var(*params): return Variable(FT(*params).cuda())
def create_noise(b):
return Variable(FT(b, nz, 1, 1).cuda().normal_(0, 1))
# Input placeholder
input = Var(bs, 3, sz, nz)
# Fixed noise used just for visualizing images when done
fixed_noise = create_noise(bs)
# The numbers 0 and -1
one = torch.FloatTensor([1]).cuda()
mone = one * -1
An optimizer needs to be told what variables to optimize. A module automatically keeps track of its variables.
optimizerD = optim.RMSprop(netD.parameters(), lr = 1e-4)
optimizerG = optim.RMSprop(netG.parameters(), lr = 1e-4)
One forward step and one backward step for D
def step_D(v, init_grad):
err = netD(v)
err.backward(init_grad)
return err
def make_trainable(net, val):
for p in net.parameters(): p.requires_grad = val
def train(niter, first=True):
gen_iterations = 0
for epoch in range(niter):
data_iter = iter(dataloader)
i = 0
while i < n:
make_trainable(netD, True)
d_iters = (100 if first and (gen_iterations < 25) or gen_iterations % 500 == 0
else 5)
j = 0
while j < d_iters and i < n:
j += 1; i += 1
for p in netD.parameters(): p.data.clamp_(-0.01, 0.01)
real = Variable(next(data_iter)[0].cuda())
netD.zero_grad()
errD_real = step_D(real, one)
fake = netG(create_noise(real.size()[0]))
input.data.resize_(real.size()).copy_(fake.data)
errD_fake = step_D(input, mone)
errD = errD_real - errD_fake
optimizerD.step()
make_trainable(netD, False)
netG.zero_grad()
errG = step_D(netG(create_noise(bs)), one)
optimizerG.step()
gen_iterations += 1
# print('[%d/%d][%d/%d] Loss_D: %f Loss_G: %f Loss_D_real: %f Loss_D_fake %f' % (
# epoch, niter, gen_iterations, n,
# errD.data[0], errG.data[0], errD_real.data[0], errD_fake.data[0]))
%time train(200, True)
Process Process-1672:
Traceback (most recent call last):
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 249, in _bootstrap
self.run()
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 26, in _worker_loop
r = index_queue.get()
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/queues.py", line 342, in get
with self._rlock:
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/synchronize.py", line 96, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
------------------------------------------------------------------------- KeyboardInterrupt Traceback (most recent call last) <ipython-input-67-d9f6a30b9585> in <module>() ----> 1 get_ipython().magic('time train(200, True)') /home/jhoward/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py in magic(self, arg_s) 2156 magic_name, _, magic_arg_s = arg_s.partition(' ') 2157 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC) -> 2158 return self.run_line_magic(magic_name, magic_arg_s) 2159 2160 #------------------------------------------------------------------------- /home/jhoward/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py in run_line_magic(self, magic_name, line) 2077 kwargs['local_ns'] = sys._getframe(stack_depth).f_locals 2078 with self.builtin_trap: -> 2079 result = fn(*args,**kwargs) 2080 return result 2081 <decorator-gen-59> in time(self, line, cell, local_ns) /home/jhoward/anaconda3/lib/python3.6/site-packages/IPython/core/magic.py in <lambda>(f, *a, **k) 186 # but it's overkill for just that one bit of state. 187 def magic_deco(arg): --> 188 call = lambda f, *a, **k: f(*a, **k) 189 190 if callable(arg): /home/jhoward/anaconda3/lib/python3.6/site-packages/IPython/core/magics/execution.py in time(self, line, cell, local_ns) 1179 if mode=='eval': 1180 st = clock2() -> 1181 out = eval(code, glob, local_ns) 1182 end = clock2() 1183 else: <timed eval> in <module>() <ipython-input-66-686b76136513> in train(niter, first) 13 j += 1; i += 1 14 for p in netD.parameters(): p.data.clamp_(-0.01, 0.01) ---> 15 real = Variable(next(data_iter)[0].cuda()) 16 netD.zero_grad() 17 errD_real = step_D(real, one) /home/jhoward/anaconda3/lib/python3.6/site-packages/torch/_utils.py in _cuda(self, device, async) 49 device = -1 50 with torch.cuda.device(device): ---> 51 return self.type(getattr(torch.cuda, self.__class__.__name__), async) 52 53 /home/jhoward/anaconda3/lib/python3.6/site-packages/torch/_utils.py in _type(self, new_type, async) 22 if new_type == type(self): 23 return self ---> 24 return new_type(self.size()).copy_(self, async) 25 26 KeyboardInterrupt:
Process Process-1666:
Process Process-1668:
Process Process-1667:
Traceback (most recent call last):
Traceback (most recent call last):
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 249, in _bootstrap
self.run()
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 249, in _bootstrap
self.run()
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 26, in _worker_loop
r = index_queue.get()
Traceback (most recent call last):
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 26, in _worker_loop
r = index_queue.get()
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/queues.py", line 342, in get
with self._rlock:
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 249, in _bootstrap
self.run()
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
Process Process-1669:
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/queues.py", line 343, in get
res = self._reader.recv_bytes()
Process Process-1670:
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/connection.py", line 216, in recv_bytes
buf = self._recv_bytes(maxlength)
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/synchronize.py", line 96, in __enter__
return self._semlock.__enter__()
Process Process-1671:
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
KeyboardInterrupt
Traceback (most recent call last):
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/connection.py", line 379, in _recv
chunk = read(handle, remaining)
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 249, in _bootstrap
self.run()
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 32, in _worker_loop
samples = collate_fn([dataset[i] for i in batch_indices])
Traceback (most recent call last):
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 26, in _worker_loop
r = index_queue.get()
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 32, in <listcomp>
samples = collate_fn([dataset[i] for i in batch_indices])
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/queues.py", line 342, in get
with self._rlock:
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 249, in _bootstrap
self.run()
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torchvision-0.1.7-py3.6.egg/torchvision/datasets/lsun.py", line 118, in __getitem__
img, _ = db[index]
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/synchronize.py", line 96, in __enter__
return self._semlock.__enter__()
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torchvision-0.1.7-py3.6.egg/torchvision/datasets/lsun.py", line 40, in __getitem__
img = Image.open(buf).convert('RGB')
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 32, in _worker_loop
samples = collate_fn([dataset[i] for i in batch_indices])
KeyboardInterrupt
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/PIL/Image.py", line 844, in convert
self.load()
Traceback (most recent call last):
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 32, in <listcomp>
samples = collate_fn([dataset[i] for i in batch_indices])
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torchvision-0.1.7-py3.6.egg/torchvision/datasets/lsun.py", line 118, in __getitem__
img, _ = db[index]
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 249, in _bootstrap
self.run()
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torchvision-0.1.7-py3.6.egg/torchvision/datasets/lsun.py", line 40, in __getitem__
img = Image.open(buf).convert('RGB')
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/PIL/Image.py", line 844, in convert
self.load()
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 32, in _worker_loop
samples = collate_fn([dataset[i] for i in batch_indices])
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/PIL/ImageFile.py", line 229, in load
n, err_code = decoder.decode(b)
KeyboardInterrupt
Process Process-1665:
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 32, in <listcomp>
samples = collate_fn([dataset[i] for i in batch_indices])
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torchvision-0.1.7-py3.6.egg/torchvision/datasets/lsun.py", line 118, in __getitem__
img, _ = db[index]
KeyboardInterrupt
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torchvision-0.1.7-py3.6.egg/torchvision/datasets/lsun.py", line 40, in __getitem__
img = Image.open(buf).convert('RGB')
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/PIL/Image.py", line 844, in convert
self.load()
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/PIL/ImageFile.py", line 229, in load
n, err_code = decoder.decode(b)
KeyboardInterrupt
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/PIL/ImageFile.py", line 229, in load
n, err_code = decoder.decode(b)
KeyboardInterrupt
Traceback (most recent call last):
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 249, in _bootstrap
self.run()
File "/home/jhoward/anaconda3/lib/python3.6/multiprocessing/process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 32, in _worker_loop
samples = collate_fn([dataset[i] for i in batch_indices])
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 32, in <listcomp>
samples = collate_fn([dataset[i] for i in batch_indices])
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torchvision-0.1.7-py3.6.egg/torchvision/datasets/lsun.py", line 118, in __getitem__
img, _ = db[index]
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torchvision-0.1.7-py3.6.egg/torchvision/datasets/lsun.py", line 43, in __getitem__
img = self.transform(img)
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torchvision-0.1.7-py3.6.egg/torchvision/transforms.py", line 23, in __call__
img = t(img)
File "/home/jhoward/anaconda3/lib/python3.6/site-packages/torchvision-0.1.7-py3.6.egg/torchvision/transforms.py", line 40, in __call__
img = img.transpose(0, 1).transpose(0, 2).contiguous()
KeyboardInterrupt
fake = netG(fixed_noise).data.cpu()
show(vutils.make_grid(fake))
show(vutils.make_grid(iter(dataloader).next()[0]))
show(vutils.make_grid(fake))
show(vutils.make_grid(iter(dataloader).next()[0]))