#|default_exp sgd
#|export
import torch
from miniai.datasets import *
from miniai.conv import *
from miniai.learner import *
from miniai.activations import *
from miniai.init import *
import pickle,gzip,math,os,time,shutil,torch,matplotlib as mpl,numpy as np,matplotlib.pyplot as plt
import fastcore.all as fc
from collections.abc import Mapping
from pathlib import Path
from operator import attrgetter,itemgetter
from functools import partial
from copy import copy
from contextlib import contextmanager
import torchvision.transforms.functional as TF,torch.nn.functional as F
from torch import tensor,nn,optim
from torch.utils.data import DataLoader,default_collate
from torch.nn import init
from torch.optim import lr_scheduler
from torcheval.metrics import MulticlassAccuracy
from datasets import load_dataset,load_dataset_builder
from miniai.datasets import *
from miniai.conv import *
from miniai.learner import *
from miniai.activations import *
from miniai.init import *
from fastcore.test import test_close
torch.set_printoptions(precision=2, linewidth=140, sci_mode=False)
torch.manual_seed(1)
import logging
logging.disable(logging.WARNING)
set_seed(42)
xl,yl = 'image','label'
name = "fashion_mnist"
dsd = load_dataset(name)
bs = 1024
xmean,xstd = 0.28, 0.35
@inplace
def transformi(b): b[xl] = [(TF.to_tensor(o)-xmean)/xstd for o in b[xl]]
tds = dsd.with_transform(transformi)
dls = DataLoaders.from_dd(tds, bs, num_workers=4)
0%| | 0/2 [00:00<?, ?it/s]
metrics = MetricsCB(accuracy=MulticlassAccuracy())
astats = ActivationStats(fc.risinstance(GeneralRelu))
cbs = [DeviceCB(), metrics, ProgressCB(plot=True), astats]
act_gr = partial(GeneralRelu, leak=0.1, sub=0.4)
iw = partial(init_weights, leaky=0.1)
lrf_cbs = [DeviceCB(), LRFinderCB()]
class SGD:
def __init__(self, params, lr, wd=0.):
params = list(params)
fc.store_attr()
self.i = 0
def step(self):
with torch.no_grad():
for p in self.params:
self.reg_step(p)
self.opt_step(p)
self.i +=1
def opt_step(self, p): p -= p.grad * self.lr
def reg_step(self, p):
if self.wd != 0: p *= 1 - self.lr*self.wd
def zero_grad(self):
for p in self.params: p.grad.data.zero_()
set_seed(42)
model = get_model(act_gr, norm=nn.BatchNorm2d).apply(iw)
learn = TrainLearner(model, dls, F.cross_entropy, lr=0.4, cbs=cbs, opt_func=SGD)
learn.fit(3)
| accuracy | loss | epoch | train |
|---|---|---|---|
| 0.773 | 0.641 | 0 | train |
| 0.825 | 0.485 | 0 | eval |
| 0.845 | 0.425 | 1 | train |
| 0.844 | 0.429 | 1 | eval |
| 0.863 | 0.376 | 2 | train |
| 0.852 | 0.406 | 2 | eval |
Consider the difference between weight decay and L2 regularization:
weight -= lr*wd*weight
...vs...
weight.grad += wd*weight
xs = torch.linspace(-4, 4, 100)
ys = 1 - (xs/3) ** 2 + torch.randn(100) * 0.1
_,axs = plt.subplots(2,2, figsize=(12,8))
betas = [0.5,0.7,0.9,0.99]
for beta,ax in zip(betas, axs.flatten()):
ax.scatter(xs,ys)
avg,res = 0,[]
for yi in ys:
avg = beta*avg + (1-beta)*yi
res.append(avg)
ax.plot(xs,np.array(res), color='red');
ax.set_title(f'beta={beta}')
class Momentum(SGD):
def __init__(self, params, lr, wd=0., mom=0.9):
super().__init__(params, lr=lr, wd=wd)
self.mom=mom
def opt_step(self, p):
if not hasattr(p, 'grad_avg'): p.grad_avg = torch.zeros_like(p.grad)
p.grad_avg = p.grad_avg*self.mom + p.grad*(1-self.mom)
p -= self.lr * p.grad_avg
set_seed(42)
model = get_model(act_gr, norm=nn.BatchNorm2d).apply(iw)
learn = TrainLearner(model, dls, F.cross_entropy, lr=1.5, cbs=cbs, opt_func=Momentum)
learn.fit(3)
| accuracy | loss | epoch | train |
|---|---|---|---|
| 0.784 | 0.597 | 0 | train |
| 0.845 | 0.423 | 0 | eval |
| 0.870 | 0.356 | 1 | train |
| 0.868 | 0.361 | 1 | eval |
| 0.886 | 0.311 | 2 | train |
| 0.876 | 0.343 | 2 | eval |
astats.color_dim()
class RMSProp(SGD):
def __init__(self, params, lr, wd=0., sqr_mom=0.99, eps=1e-5):
super().__init__(params, lr=lr, wd=wd)
self.sqr_mom,self.eps = sqr_mom,eps
def opt_step(self, p):
if not hasattr(p, 'sqr_avg'): p.sqr_avg = p.grad**2
p.sqr_avg = p.sqr_avg*self.sqr_mom + p.grad**2*(1-self.sqr_mom)
p -= self.lr * p.grad/(p.sqr_avg.sqrt() + self.eps)
set_seed(42)
model = get_model(act_gr, norm=nn.BatchNorm2d).apply(iw)
learn = TrainLearner(model, dls, F.cross_entropy, lr=3e-3, cbs=cbs, opt_func=RMSProp)
learn.fit(3)
| accuracy | loss | epoch | train |
|---|---|---|---|
| 0.768 | 0.660 | 0 | train |
| 0.818 | 0.489 | 0 | eval |
| 0.847 | 0.417 | 1 | train |
| 0.844 | 0.430 | 1 | eval |
| 0.864 | 0.368 | 2 | train |
| 0.853 | 0.407 | 2 | eval |
astats.color_dim()
class Adam(SGD):
def __init__(self, params, lr, wd=0., beta1=0.9, beta2=0.99, eps=1e-5):
super().__init__(params, lr=lr, wd=wd)
self.beta1,self.beta2,self.eps = beta1,beta2,eps
def opt_step(self, p):
if not hasattr(p, 'avg'): p.avg = torch.zeros_like(p.grad.data)
if not hasattr(p, 'sqr_avg'): p.sqr_avg = torch.zeros_like(p.grad.data)
p.avg = self.beta1*p.avg + (1-self.beta1)*p.grad
unbias_avg = p.avg / (1 - (self.beta1**(self.i+1)))
p.sqr_avg = self.beta2*p.sqr_avg + (1-self.beta2)*(p.grad**2)
unbias_sqr_avg = p.sqr_avg / (1 - (self.beta2**(self.i+1)))
p -= self.lr * unbias_avg / (unbias_sqr_avg + self.eps).sqrt()
set_seed(42)
model = get_model(act_gr, norm=nn.BatchNorm2d).apply(iw)
learn = TrainLearner(model, dls, F.cross_entropy, lr=6e-3, cbs=cbs, opt_func=Adam)
learn.fit(3)
| accuracy | loss | epoch | train |
|---|---|---|---|
| 0.790 | 0.582 | 0 | train |
| 0.841 | 0.431 | 0 | eval |
| 0.867 | 0.363 | 1 | train |
| 0.863 | 0.376 | 1 | eval |
| 0.884 | 0.315 | 2 | train |
| 0.871 | 0.349 | 2 | eval |
We've already seen how we can easily write a custom LR-adjusting callback or Learner, or can use the predefined PyTorch schedulers. We'll use the predefined ones for now since there's nothing new to learn in implementing them ourselves.
' '.join(o for o in dir(lr_scheduler) if o[0].isupper() and o[1].islower())
'ChainedScheduler ConstantLR CosineAnnealingLR CosineAnnealingWarmRestarts Counter CyclicLR ExponentialLR LambdaLR LinearLR MultiStepLR MultiplicativeLR OneCycleLR Optimizer PolynomialLR ReduceLROnPlateau SequentialLR StepLR'
' '.join(filter(lambda x: x[0].isupper() and x[1].islower(), dir(lr_scheduler)))
'ChainedScheduler ConstantLR CosineAnnealingLR CosineAnnealingWarmRestarts Counter CyclicLR ExponentialLR LambdaLR LinearLR MultiStepLR MultiplicativeLR OneCycleLR Optimizer PolynomialLR ReduceLROnPlateau SequentialLR StepLR'
learn = TrainLearner(get_model(), dls, F.cross_entropy, lr=6e-3, cbs=[DeviceCB(), SingleBatchCB()])
learn.fit(1)
opt = learn.opt
' '.join(o for o in dir(opt) if o[0]!='_')
'add_param_group defaults load_state_dict param_groups state state_dict step zero_grad'
opt
SGD (
Parameter Group 0
dampening: 0
differentiable: False
foreach: None
lr: 0.006
maximize: False
momentum: 0
nesterov: False
weight_decay: 0
)
param = next(iter(learn.model.parameters()))
st = opt.state[param]
st
{'momentum_buffer': None}
len(opt.param_groups)
1
pg = opt.param_groups[0]
list(pg)
['params', 'lr', 'momentum', 'dampening', 'weight_decay', 'nesterov', 'maximize', 'foreach', 'differentiable']
sched = lr_scheduler.CosineAnnealingLR(opt, 100)
sched.base_lrs
[0.006]
sched.get_last_lr()
[0.006]
def sched_lrs(sched, steps):
lrs = [sched.get_last_lr()]
for i in range(steps):
sched.optimizer.step()
sched.step()
lrs.append(sched.get_last_lr())
plt.plot(lrs)
sched_lrs(sched, 110)
#|export
class BaseSchedCB(Callback):
def __init__(self, sched): self.sched = sched
def before_fit(self, learn): self.schedo = self.sched(learn.opt)
def _step(self, learn):
if learn.training: self.schedo.step()
#|export
class BatchSchedCB(BaseSchedCB):
def after_batch(self, learn): self._step(learn)
#|export
class HasLearnCB(Callback):
def before_fit(self, learn): self.learn = learn
def after_fit(self, learn): self.learn = None
#|export
class RecorderCB(Callback):
def __init__(self, **d): self.d = d
def before_fit(self, learn):
self.recs = {k:[] for k in self.d}
self.pg = learn.opt.param_groups[0]
def after_batch(self, learn):
if not learn.training: return
for k,v in self.d.items():
self.recs[k].append(v(self))
def plot(self):
for k,v in self.recs.items():
plt.plot(v, label=k)
plt.legend()
plt.show()
def _lr(cb): return cb.pg['lr']
len(dls.train)
59
tmax = 3 * len(dls.train)
sched = partial(lr_scheduler.CosineAnnealingLR, T_max=tmax)
set_seed(42)
model = get_model(act_gr, norm=nn.BatchNorm2d).apply(iw)
rec = RecorderCB(lr=_lr)
xtra = [BatchSchedCB(sched),rec]
learn = TrainLearner(model, dls, F.cross_entropy, lr=2e-2, cbs=cbs+xtra, opt_func=optim.AdamW)
learn.fit(3)
| accuracy | loss | epoch | train |
|---|---|---|---|
| 0.809 | 0.515 | 0 | train |
| 0.858 | 0.383 | 0 | eval |
| 0.881 | 0.327 | 1 | train |
| 0.874 | 0.339 | 1 | eval |
| 0.898 | 0.280 | 2 | train |
| 0.883 | 0.317 | 2 | eval |
rec.plot()
#|export
class EpochSchedCB(BaseSchedCB):
def after_epoch(self, learn): self._step(learn)
sched = partial(lr_scheduler.CosineAnnealingLR, T_max=3)
set_seed(42)
xtra = [EpochSchedCB(sched),rec]
model = get_model(act_gr, norm=nn.BatchNorm2d).apply(iw)
learn = TrainLearner(model, dls, F.cross_entropy, lr=2e-2, cbs=cbs+xtra, opt_func=optim.AdamW)
learn.fit(3)
| accuracy | loss | epoch | train |
|---|---|---|---|
| 0.809 | 0.517 | 0 | train |
| 0.857 | 0.382 | 0 | eval |
| 0.881 | 0.327 | 1 | train |
| 0.875 | 0.339 | 1 | eval |
| 0.899 | 0.275 | 2 | train |
| 0.887 | 0.307 | 2 | eval |
rec.plot()
Paper by Leslie Smith.
def _beta1(cb): return cb.pg['betas'][0]
rec = RecorderCB(lr=_lr, mom=_beta1)
set_seed(42)
lr,epochs = 6e-2,5
model = get_model(act_gr, norm=nn.BatchNorm2d).apply(iw)
tmax = epochs * len(dls.train)
sched = partial(lr_scheduler.OneCycleLR, max_lr=lr, total_steps=tmax)
xtra = [BatchSchedCB(sched), rec]
learn = TrainLearner(model, dls, F.cross_entropy, lr=lr, cbs=cbs+xtra, opt_func=optim.AdamW)
learn.fit(epochs)
| accuracy | loss | epoch | train |
|---|---|---|---|
| 0.765 | 0.662 | 0 | train |
| 0.822 | 0.546 | 0 | eval |
| 0.862 | 0.376 | 1 | train |
| 0.856 | 0.413 | 1 | eval |
| 0.888 | 0.304 | 2 | train |
| 0.879 | 0.333 | 2 | eval |
| 0.904 | 0.257 | 3 | train |
| 0.901 | 0.279 | 3 | eval |
| 0.924 | 0.210 | 4 | train |
| 0.906 | 0.267 | 4 | eval |
rec.plot()
import nbdev; nbdev.nbdev_export()