from fastai.gen_doc.nbdoc import * from fastai.text import * from fastai.text.interpret import * from fastai.gen_doc.nbdoc import * from fastai.vision import * show_doc(TextClassificationInterpretation) show_doc(TextClassificationInterpretation.intrinsic_attention) show_doc(TextClassificationInterpretation.html_intrinsic_attention) show_doc(TextClassificationInterpretation.show_intrinsic_attention) show_doc(TextClassificationInterpretation.show_top_losses) imdb = untar_data(URLs.IMDB_SAMPLE) data_lm = (TextList.from_csv(imdb, 'texts.csv', cols='text') .split_by_rand_pct() .label_for_lm() .databunch()) data_lm.save() data_lm.show_batch() learn = language_model_learner(data_lm, AWD_LSTM) learn.fit_one_cycle(2, 1e-2) learn.save('mini_train_lm') learn.save_encoder('mini_train_encoder') data_clas = (TextList.from_csv(imdb, 'texts.csv', cols='text', vocab=data_lm.vocab) .split_from_df(col='is_valid') .label_from_df(cols='label') .databunch(bs=42)) learn = text_classifier_learner(data_clas, AWD_LSTM) learn.load_encoder('mini_train_encoder') learn.fit_one_cycle(2, slice(1e-3,1e-2)) learn.save('mini_train_clas') interp = TextClassificationInterpretation.from_learner(learn) interp.show_intrinsic_attention("I really like this movie, it is amazing!")